$\qquad$
$\qquad$

## IncClase Uorefbook

## Expressions and Equations:

Unit 4 - Part 2: Solving Equations and Inequalities

## How do we use patterns to understand mathematics and model situations?

| Standard | Description |
| :--- | :--- |
| 7.EE.A.1 | $\rightarrow \quad$Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with <br> rational coefficients. |
| 7.EE.A.2 | Understand that rewriting an expression in different forms in a problem context can shed light on the problem <br> and how the quantities in it are related. |
| 7.EE.B.3 | Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any <br> form using tools strategically. Apply properties of operations to calculate with numbers in any form; convert <br> between forms as appropriate; and assess the reasonableness of answers using mental computation and <br> estimation strategies. |
| 7.EE.B.4 | Use variables to represent quantities in a real-world or mathematical problems, and construct simple equations <br> and inequalities to solve problems by reasoning about the quantities. |


| Packet Completion Rubric |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{1}$ |  |  |
| Workbook demonstrates <br> significant effort. Student <br> utilizes notes to help <br> extend their thinking, <br> writing questions, <br> comments or reactions to <br> the content. | Workbook <br> demonstrates some <br> effort. Student takes <br> notes but could <br> further understanding <br> by questioning and <br> interacting with the <br> material. | Workbook shows little <br> effort. Student takes <br> notes sporadically, and <br> could benefit from <br> greater consistency with <br> the material. | Workbook shows little <br> to no effort. Student <br> does not take notes and <br> must demonstrate <br> future interaction with <br> the material to aid <br> understanding. | Workbook is entirely <br> incomplete or not <br> turned in. |  |  |

I am a person who believes in asking questions, in not conforming for the sake of conforming. I am deeply dissatisfied - about so many things, about injustice, about the way the world works - and in some ways, my dissatisfaction drives my storytelling.

Chimamanda Ngozi Adichie

## Unit 4 Part 2 Guiding Question:



## Lesson Objectives

| Lesson <br> After completing a lesson, check the box | I can... After completing each lesson, you are on the right track if you can confidently state "I can..." |
| :---: | :---: |
| - 4.5 | Solve one-step inequalities |
| - 4.6 | Solve two-step equations |
| - 4.7 | Solve two-step equations |
| - 4.8 | Solve two-step inequalities |



## Equation vs. Inequality

| An $\qquad$ shows that two expressions are equal. For example: | Whereas, an $\qquad$ shows that two quantities are not always equal. For example: |
| :---: | :---: |
|  | This statement is read as " n is less than 5 ". |

## Reading Inequalities

This is read as:
" n is less than or equal to 5 "
" 5 is greater than or equal to n"
" 5 is greater than or equal to n"
" n is less than or equal to 5 "

| INEQUALITY SIGNS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Sign |  | Meaning |  | Example |
| > |  |  |  |  |
| $\geq$ |  |  |  |  |
| $<$ |  |  |  |  |
| $\leq$ |  |  |  |  |
| YOU TRY! |  |  |  |  |
| Inequality | Word Phrases |  |  |  |
| $\mathrm{m}<7$ |  |  |  |  |
| $\mathrm{s} \geq 8$ |  |  |  |  |
| $x+4 \leq 2$ |  |  |  |  |
| $x \neq 7$ |  |  |  |  |
| Steps for Solving Inequalities |  |  | Exam |  |
| Three-step process when working with inequalities: <br> 1. Solve <br> 2. Graph $ص \square$ miswnew <br> 3. Check with substitution |  |  |  | 12 |
| STEP 1: Solve |  |  |  |  |
| Solving Inequalities with Addition \& Subtraction |  |  | Solvin |  |
| You can $\qquad$ or $\qquad$ the same number from both sides of the inequality and the inequality will remain true. (Balancing!) |  |  | You c inequ will re | $\qquad$ both sid ber and the ine |
| Examples: |  |  | Exam |  |

## Inequality Sign Rule

When multiplying or dividing by a number, you must flip the inequality symbol.

Example:

Rule Explained! Video notes:

Direction of Inequality Sign

| Does Not Change Direction | Changes the Direction |
| :--- | :--- |
| - Add / Subtract a number <br> from both sides | - Multiple/Divide both sides <br> by a negative number |
| - Multiply/Divide both sides |  |
| by a positive number |  |
| - Simplify a side | Example: $-2 x<12$ <br> $x>-6$ |
| Example: $3 x<7+3$ <br> $3 x<10$ | Swapping left and right hand <br> sides |
| Example: $2 y+7<12$ |  |
| $12>2 y+7$ |  |

STEP 2: Graph

After we solve an inequality, we graph the possible solutions on the number line.

When plotting the initial point:

Use ${ }^{\circ}$ when graphing $>$ or $<$.
Use ${ }^{\bullet}$ when graphing $\geq$ or $\leq$.

## Graphing Examples:

1. $\mathbf{n} \geq \mathbf{1 5}$ (circle filled in indicated that 15 is included in the solutions)

2. $\mathbf{n}<-\mathbf{1 3}$ (blank circle indicated that 13 is NOT included in the solutions)


$$
x>4
$$

$$
x<-3
$$


$x \geq-5$
$x \leq 2$


## Let's Chat!

| What are these graphs and dots telling us <br> about our answer? | Thoughts: |
| :--- | :--- |
| How can you remember when tofill in the <br> dot? | Thoughts: |

## STEP 3: CHECK

After you have solved and graphed possible solutions, you can check the inequality by plugging in one of the solutions.

| $\mathrm{x}+5<14$ | $5 \mathrm{x}>-15$ | $\mathrm{x}+5 \leq 6$ | $\frac{x}{-3} \geq 11$ |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |

Guided Practice
Directions: Solve \& graph the inequality. Check your answer with your groupmates.



## Direct Instruction

Video 1 Notes: What does it mean to solve a two step equation?
1.
2. $\qquad$
3. $\qquad$

## Video 2: Example - Solving a two step equation

$$
-16=\frac{x}{4}+2
$$

## SOLVING TWO-STEP EQUATIONS

STEP 1: Get the entire variable term by itself
STEP 2: Get the variable by itself

| STEPS | PROBLEM |  |
| :--- | :--- | :--- |
| STEP 1: Get the entire variable term by <br> itself | $5 \mathrm{x}+10=20$ |  |
| STEP 2: Get the variable by itself | $-\frac{z}{4}=10$ | Does it check? |
| STEP 1: Get the entire variable term by |  |  |
| itself |  |  |
| STEP 2: Get the variable by itself | $8 y+10=98$ | Does it check? |
| STEP 1: Get the $\underline{\text { entire variable term by }}$STEP 2: Get the variable by itself <br> itself |  |  |

## Math Chat!

How are inequalities different from equations? How are they the same?


| Guided Practice- Complete the task card. Show ALL your work. Check your answer! |  |
| :--- | :--- |
| Task Card:___ Task Card: |  |



| Video notes: Solve with MathAntics! |  |
| :---: | :---: |
| $2 x+2=8$ | $\frac{x}{2}-1=4$ |
|  | $2(x+2)=8$ |
|  | $\frac{x-1}{2}=4$ |
|  |  |


| Helpful tip: | Order of <br> operations <br> ( ) Groups <br> 2 Exponents <br> $3 \times \div$ <br> $4+-$ |
| :---: | :---: |

Direct Instruction - Let's try this one together!

$$
17 t+22(4-t)=70
$$

$$
15\left(1-\frac{N}{5}\right)=20
$$

$$
X-(33-x)=2
$$

## CHECK IN!

## Yourself:

Partner:

Guided Practice: Scavenger Hunt


| POSTER $\#$ | ANSWER___ |
| :---: | :---: |
|  |  |
|  |  |
|  |  |

Check yourself: Teacher Initials $\qquad$

| Unit 4 Solving Equations \& Inequalities | Lesson 4.8 |
| :--- | :---: |


| Lesson $\underset{\text { Do-Now }}{4.8}$ |  | Solve for each of the unknown values. <br> Kiwi $=$ $\qquad$ <br> Orange $=$ $\qquad$ <br> Broccoli $=$ $\qquad$ |
| :---: | :---: | :---: |
| Homework Reminder | Shade in the box if <br> "Excellence is not an art. It | u turned in your homework. <br> s the habit of practice."-Aristotle |
| Check-In | How are you doing today? <br> What do you wonder about algebra? |  |

## Review of Solving Two-Step Equations

The method of solving two-step inequalities is similar to solving $\qquad$ .

Consider the equation: $\mathbf{2 x}+2=8$
As mentioned in yesterday's video, the " $x$ " in this equation is involved in TWO different operations: addition and multiplication. To get "x" alone, you need to use TWO inverse operations (subtraction and division):

## Solving Two-Step Inequalities

Consider if this equation was turned into an inequality:

$$
2 x+2<8
$$

Just like with two-step equations, you would use inverse operations (in this case, subtraction and division) to get the x alone:

We used $\qquad$ to solve this inequality.

## Inequality Sign Rule

When multiplying or dividing by a negative number, you must flip the inequality symbol.


You Try!
Remember: Solve-Graph-Check
$\frac{a}{-8}+15>23$ $\qquad$

$\frac{f}{2}-22<48$ $\qquad$

$-25+\frac{t}{2} \geq 50$ $\qquad$


## Solving Two Step Inequalities Video Notes

Solve the following problem: $\frac{2}{3}>\mathbf{- 4 y}-8 \frac{1}{3}$

Guided Practice: Scavenger Hunt



# Math Talks 

$\left.\begin{array}{|c|c|}\hline \text { 4.5 What does a solution set to an inequality mean? } \\ \text { For example: } y>8\end{array} \begin{array}{c}4.6 \text { What does it mean to "isolate the variable term"? } \\ \text { Is that the final step to solving two-step equations? }\end{array}\right]$

## Workbook Reflection

Answer the question as completely as possible, using evidence from what we have learned this unit. Justify your response with examples and evidence from throughout the packet.

How can we solve two-step equations and inequalities?

Choose one of the following concepts and describe it. Include visuals to support your answer.

- Difference between Equations and Inequalities
- Meaning of solutions to inequalities
- Tips to solve two-step equations and inequalities

What lesson most challenged your thinking?

What would you have done differently?

Flip through your packet, and look to see if you shaded the box every day for turning in your homework. How many days did you shade it in?

| Lesson 5 | Lesson 6 | Lesson 7 | Lesson 8 |
| :---: | :---: | :---: | :---: |

If you didn't finish it each night, consider why $\rightarrow$

Would you like to come in during lunch or recess for support?

