\qquad
\qquad

IncClase Uorebbook

Expressions and Equations:
Unit 4 - Part 1: Solving Equations and Inequalities

How do we use patterns to understand mathematics and model situations?

Standard	Description
7.EE.A.1	$\rightarrow \quad$Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
7.EE.A.2	Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related.
7.EE.B.3	Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.
7.EE.B.4	Use variables to represent quantities in a real-world or mathematical problems, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

Packet Completion Rubric					
$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	
Workbook demonstrates significant effort. Student utilizes notes to help extend their thinking, writing questions, comments or reactions to the content.	Workbook demonstrates some effort. Student takes notes but could further understanding by questioning and interacting with the material.	Workbook shows little effort. Student takes notes sporadically, and could benefit from greater consistency with the material.	Workbook shows little to no effort. Student does not take notes and must demonstrate future interaction with the material to aid understanding.	Workbook is entirely incomplete or not turned in.	

$$
\text { Grading Breakdown: } \quad 3.5-4=\mathrm{A} \quad 3-3.4=\mathrm{B} \quad 2.5-2.9=\mathrm{C} \quad 2-2.4=\mathrm{D} \quad 0-1.9=\mathrm{F}
$$

I am a person who believes in asking questions, in not conforming for the sake of conforming. I am deeply dissatisfied - about so many things, about injustice, about the way the world works - and in some ways, my dissatisfaction drives my storytelling.

Chimamanda Ngozi Adichie

Unit 4 Part 1 Guiding Question:

Lesson Objectives

Lesson After completing a lesson, check the box	I can... After completing each lesson, you are on the right track if you can confidently state "I can..."
- 4.1	Define key vocabulary in mathematical expressions
$\square 4.2$	Combine like terms to create equivalent expressions
- 4.3	Solve one-step equations
- 4.4	Solve one-step equations

$\begin{aligned} & \text { Lesson } \\ & 4.1 \\ & \text { DO-NOW } \end{aligned}$	chicken sandwich chicken biscuit coke sprite chicken biscuit chicken biscuit chicken strips chicken sandwiches chicken strips fries sprite 5 biscuits	You text all your friends and say you are picking up Popeyes for them today! You have saved up some money and wanted to bring them lunch for being awesome. YOUR TASK: What is the easiest way to put in this order at Popeyes? Explain!
Homework Reminder	This is where you will shade in the There is no ho "Excellence is not an art. It	e box if you turned in your homework. nework due today! :) the habit of practice." - Aristotle
Check-In	How are you doing today? What do you wonder about algebra?	

What do you know about algebra?

What is Algebra?

Algebra uses \qquad and other symbols to describe quantities in These letters are referred to as
\qquad , and \qquad .
\qquad .

Video Takeaway:

Match the proper example to the proper term by drawing a line between them...

$5+7$	$13 \mathrm{x}-24$	$2 \mathrm{x}+7$	$3+101$

Algebraic Expression	Algebraic Expression	Expression	Expression

Expressions

An expression is a mathematical phrase that can contain \qquad ,

Each part of an expression (and equation) is called a \qquad
For example: -6x +12
There are $\mathbf{2}$ terms:
-6x and 12

Use the expression below to label the various parts of the expression.

$-6 x+12$

| Expanded Form | Standard Form |
| :--- | :--- | :--- |

Coefficients VS. Constants VS. Variables

$$
8 x-5
$$

Coefficients- numbers multiplied by variables

Variables- letters
representing a value that
may change

Constants- numbers standing alone that do not change

You Try!

$$
12 x-4+y-2 w
$$

Is this an expression or an equation? \qquad
So, will we simplify or solve? \qquad
Coefficients-

Variables-

Expressions from Expanded to Standard Form	
We simplify expressions by COMBINING LIKE TERMS!	ONLY LIKE TERMS CAN BE
COMBINED!	

Write an expression to represent their purchases:

Simplify the expression by combining like terms:

$$
5+3 x+2 y+3 y+7+3 x+-1+-5 y+-10 x+7 y
$$

LIKE TERMS:

X terms	Y terms	Constants

Combine (add together) each group of like terms, above, to write the simplified version of the expression.
Write your simplified version in the box below.
\square

1. $3 x+14 y+7 x+9 x+1+y$

Is this an equation or an expression? \qquad Why? \qquad

Like Terms

Combine and Simplify: \qquad
2. $15 y+6 x+8-5 y$

Is this an equation or an expression? \qquad Why? \qquad

Like Terms

Combine and Simplify: \qquad

Rewrite $5 \boldsymbol{x}+3 \boldsymbol{x}$ by combining like terms:	Rewrite $5 \boldsymbol{x}-3 \boldsymbol{x}$ by combining like terms:	
$7 \mathrm{a}-6+8 \mathrm{a}$	$14 \mathrm{~b}+6 \mathrm{~b}-12$	$20 \mathrm{c}+8 \mathrm{~d}+10 \mathrm{c}-5 \mathrm{~d}$

REMEMBER:

To have a simplified expression ALL like terms must be combined!

Guided Practice

Equation or Expression

(Circle equation or expression)

1. $\mathrm{x}+3$

Equation or Expression
3. $x+3=7$

Equation or Expression
5. You simplify a

Equation or Expression
2. $3 x+3+4 y=45$

Equation or Expression

4. $4 \mathrm{~s}+3-5$

Equation or Expression

6. You solve a \qquad
Equation or Expression

Circle, Underline, or Place a BOX around Like Terms

1. $4 \mathrm{x}+\mathrm{x}+3+2 \mathrm{x}+6$
2. $7 \mathrm{~S}+1+9 \mathrm{~s}-12 \mathrm{x}-1$
3. $5 y-4 x+11+11 y$
4. $7 \mathrm{j}+\mathrm{y}+\mathrm{j}+12-12 \mathrm{y}$

Combine Like Terms in these Algebraic Expressions

Remember to Add up Like Terms and Remember the Rules of Adding and Subtracting Rational Numbers

1. $6 x+5+2 y-5 x+3$

Like Terms: \qquad
Like Terms: \qquad
Like Terms: \qquad

Simplified expression
2. $x-y+2 x-2+3 y+3+2 y-x$

Like Terms: \qquad
Like Terms: \qquad
Like Terms: \qquad

Simplified expression
\qquad

```
3. 2+2s+5x+2x+11s+10
```

Like Terms: \qquad
Like Terms: \qquad
Like Terms: \qquad

Simplified expression
\qquad

$\begin{aligned} & \text { Lesson } \\ & \text { DO-NOW } \end{aligned}$	Find the greatest common factor (GCF) of the following pairs of numbers: 24 and 18 9 and 20	Example: 12 and 16 Factors of 12: (1) (2) 3, (4) 6, 12 Factors of 16: (4) is the Greatest Common Factor
Homework Reminder	Shade in the box if you turned in your homework. "Excellence is not an art. It is the habit of practice." - Aristotle	
Check-In	How are you doing today? What do you wonder about algebra?	

Simplify using order of operations - PEMDAS

$6(3+9)$	$5(9+2)$	$2(8-4)$
How is this expression different?	$7(x+2)$	Brainstorm how this expression could be expanded!

Distributive Property- Creating Equivalent Expressions
The distributive property allows the \qquad outside of the parentheses to be
\qquad to the terms inside the parentheses.

EXAMPLE:	$\mathbf{3}(\mathbf{2}+7)$	EXAMPLE:
		$3(x+7)$

| Distributive Property- | |
| :--- | :--- | :--- |
| Each of the four members of the Robinson family
 ordered a drink (d), two slices of pizza (p), and an ice
 cream cone (c). | Distribute and write an expression to represent
 their order: |
| $4(2)$ | |

Distribute a Negative - Be Mindful!			
$-5(2 x+9)$	$-1 / 2(6 t+2)$	$-3(-4 a-2)$	

Factoring - Creating Equivalent Expressions
Expressions can be \qquad to remove the common factor.

This is how we " \qquad " the distributive property.

1. Determine the greatest common factor between

Example:

$$
6 x+15
$$

2. Remove the greatest common factor by dividing each term by it, and put it in front of the factored expression in parentheses

Factoring - Let's Try it!

$6 \mathrm{a}+2$	$-24 \mathrm{x}-9$	$10 \mathrm{x}+35$

Name

\qquad Date \qquad

Greatest Common Factor Coloring

For each question there is one correct answer and a color associated with that answer. On the coloring page each question number section should be filled in with that colorl

Rewrite the expression using the GCF times the sum of two numbers.					
			Rewrite the expression using the GCF times the sum of two numbers.		
2(9.8)	3(6-5)	4(4,5)	8(5 - 7)	2(20 - 28)	4(10-14)
PINK	RED	PURPLE	PURPLE	LIGHt blue	ORANGE
2			7		
Rewrite the expression using the GCF times the sum of two numbers.			Rewrite the expression using the GCF times the sum of two numbers.		
$20 \cdot 50$			$56 \cdot 91$		
2(10-25)	$5(4 \cdot 10)$	10(2 - 5)	14(4-7)	7(8.13)	4(14-23)
DARK BLUE	ORANGE	PINK	PINK	LIGHT GREEN	LIGHt blue
Rewrite the expression using the GCF times the sum of two numbers.			8 Rewrite the expression using the GCF times the sum of two numbers.		
66 - 44			$\mathbf{2 5}+55$		
2(33 - 22)	$3(22 \cdot 14)$	22(3.2)	25(1-2)	$11(5 \cdot 5)$	5(5 • II)
ORANGE	RED	dark blue	DARK GREEN	PURPLE	YELLOW
4			q Rewrite the expression using the GCF times the sum of two numbers.		
Rewrite the expression using the GCF times the sum of two numbers.					
$32 \cdot 27$			$30 \cdot 84$		
I(32 - 27)	2(16-14)	3(II - q)	5(6-14)	6(5.14)	15(2 - 6)
DARK GREEN	PURPLE	ORANGE	PINK	LIGHt blue	YELLOW
Rewrite the expression using the GCF times the sum of two numbers.			10 Rewrite the expression using the GCF times the sum of two numbers.		
$12 \cdot 84$			$77 \cdot 22$		
2(6-42)	12(1-7)	6 (2 - 14)	2(38 - 11)	7(IIP2)	$11(7 \times 2)$
BLACK	ORANGE	LIGHT GREEN	BROWN	ORANGE	RED

| Lesson | What is the value of the unknown (x) in this |
| :--- | :--- | :--- |
| picture? | |
| DO-NOW | |

EXPRESSION VS. EQUATION

Identifying Missing Information

Solving equations using variables involves skills that you already know how to accomplish.

Don't believe me?
See if you can identify the missing information in the boxes to the right.

1. \qquad $+7=24$
2. $32 \div-\quad=8$
3. 4^{*} \qquad $=48$
4. \qquad $-102=79$

What does it mean to "solve" an equation?
Take the following equation:

$$
x+7=12
$$

What does it mean to "solve" this equation?
To solve this equation means that we \qquad of the variable. In this case, $\mathrm{x}=$ \qquad
Think of an equation like a balanced scale. We must always ensure that the scale stays balanced, or equal, to ensure our equation remains true.

When two quantities are \qquad , we say that they are \qquad .

When solving equations, our goal will be to rewrite our equations so that:

1. The variable is on its \qquad of the equals sign.

$$
\mathrm{X}=5 \text { instead of } \mathrm{X}+7=12
$$

2. We keep the equation \qquad .

Solving One-Step Equations Video Notes

Solving One-Step Equations - Let's Practice!

$x+13=20$	$x-3=2$
$9=x+4$	$25=x-6$

Inverse Operations			
For ADDITION	the inverse operation is...		
For SUBTRACTION	the inverse operation is...		
For MULTIPLICATION	the inverse operation is...		
For DIVISION	the inverse operation is...		
	$x+8=14$	$\mathrm{x} / 4=16$	$3 \mathrm{x}=15$
This problem says:			
The operation is:			
The inverse operation is:			
o solve, I must:			

Solving One-Step Equations - Let's Practice!	
$4 \mathrm{x}=20$	$\mathrm{x} / 3=8$
$12=\frac{x}{6}$	$64=6 \mathrm{x}$

Guided Practice - Maze Runner! Show your work in the spaces below!

$4 x=36$	$5+x=12$	
$\frac{4 x}{4}=\frac{36}{4}$	$5+x-5=12-5$	
$X=9$		

| Lesson | Find the value of the shapes in the puzzle: |
| :--- | :--- | :--- |
| DO-NOW | |

Inverse Operations	$\frac{3}{4}=\frac{x}{3}$	$3.4=\mathrm{x}+3.2$	$5 \mathrm{x}=12$
This problem says:			
The operation is:			
The inverse operation is:			
To solve, I must:			

Solving One-Step Equations - Let's Practice!

SOLVE	CHECK BY SUBSTITUTION
$\frac{3}{4}=\frac{x}{3}$	
$3.4=\mathrm{x}+3.2$	

$5 \mathrm{x}=12$	
$5 \mathrm{x}=\frac{3}{2}$	

Checking By Substitution

Solve the equation for the given variable.

Check your work by substituting your answer back into the original equation.

Let's Practice

For each of the following problems, solve the equation for the given variable. Show your work for every problem and CHECK YOU SOLUTION. Credit will only be given if you show your work.

$23.7+\mathrm{x}=12.9$	$\frac{1}{4} \mathrm{x}=5$	$\frac{x}{3.5}=4$
$\frac{5}{4}=\mathrm{x}-\frac{1}{2}$	$\frac{x}{3}=\frac{1}{3}$	$2.4 \mathrm{x}=24$

Guided Practice - Error Analysis

Directions - In the spaces below, complete the error analysis by determining what each student did incorrectly and what each student should have done to solve each problem.

$\begin{aligned} & \text { E } \\ & \text { O } \\ & 0 \\ & 0 . \\ & \text { en } \end{aligned}$	-			

				Create your own!

Extra Time? Math Riddles: Using Algebraic Criti	nking Skills! Yippee!
 How would this problem change if you took away the numbers and were only told that the equals zero?	

WORK SPACE:

Math Talks

4.1 What does it mean to make an equivalent expression? How is this helpful when solving problems?
4.2 How can factoring and distributing help us simplify expressions and eventually solve equations? What prior knowledge are we using to implement these properties?
4.3 What is the difference between an expression and
4.4 What does it mean to keep an equation balanced? an equation? How can we use them differently?

Workbook Reflection

Answer the question as completely as possible, using evidence from what we have learned this unit. Justify your response with examples and evidence from throughout the packet.

How can we create equivalent expressions? What is the purpose of creating equivalent expressions?
\square
Choose one of the following concepts and describe it. Include visuals to support your answer.

- Balanced Scale
- Combine Like Terms
- Equations vs. Expressions
\square

What lesson most challenged your thinking?

What would you have done differently?

Flip through your packet, and look to see if you shaded the box every day for turning in your homework. How many days did you shade it in?

Lesson 1	Lesson 2	Lesson 3	Lesson 4

If you didn't finish it each night, consider why \rightarrow
Would you like to come in during lunch or recess for support?

